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Abstract

Basic aerodynamic coefficients are modeled as
functions of angles of attack and sideslip with vehicle
lateral symmetry and compressibility effects. Most of the
aerodynamic parameters can be well-fitted using
polynomial functions. In this paper a fast, reliable way of
predicting aerodynamic coefficients is produced using a
neural network. The training data for the neural network
is derived from wind mnneI test and numerical

simulations. The coefficients of lift, drag, pitching
moment are expressed as a function of alpha (angle of
attack) and Mach number. The results produced from
preliminary neural network analysis are very good

Introduction

Wind tunnels use scaled models to characterize

aerodynamic coefficients. The wind tunnel data, in original

form, are unsuitable for use in piloted simulations because
data obtained in different wind tunnels with different scale

models of the same vehicle are not always consistent.

Fitting a smooth function through the wind tunnel data
result_s_ in smoQtt3_ d_eriv_atijes of th_e data. The smooth

derivatives are important in pertbrming stability analyses.
Traditionally, the approach considered to describe the
aerodynamics of the vehicle included developing,

wherever possible, a polynomial description of each
aerodynamic function (B. Jackson and C. Cruz 1992). This
ensured a smooth continuous function and removed some

of the scatter in the wind tunnel data. Also, measurements
of the same coefficient from two different wind tunnels are

usually taken at dissimilar values of angle of attack and

sideslip, and some means of reconciling the two dissimilar
sets of raw data were needed. This curve fitting procedure
is unnecessary for few coefficients. The curve fitting

method used to generate the parameters for each
polynomial description is an unweighted least squares
algorithm. For the most part, the polynomial equations are

generated using sparse data from wind tunnel experiments.

Due to sparcity of data, mostly it will be defined as a linear
type of function. When more data are available, flight

control system designs will need to be revisited to allow
for minor nonlinearities in control effects.

Wind tunnel testing can be slow and costly due to high
personnel overhead and intensive power utilization.

Although manual curve fitting can be done, it is highly
efficient to use a neural network (Magnus Norgaard,

Jorgensen C and James Ross 1997, M.M.Rai and
N.K.Madavan 2000 and Ching F.Lo, J.L.Zhao and

DeLoach R 2000) to define complex relationship between
variables. This paper is organized as follows: A short
introduction to neural network and learning followed by a
section that will introduce the data set. Then results will be

discussed to find an optimal solution to the various
aerodynamic coefficients. The final section will conclude
optimizing the neural network and research directions.

Neural Network

A neural network is conceptually comprised of a collection

of nodes and connectio_ns.(Rumelhart, Hinton and Williams
1986; Wasserman 1989; Simpson 1990; Lau 1992; Masters
1993; Jondarr 1996; Kartalopoulos 1996). The basic
elements of a network are called neurons; they represent

the sites that process information. The interconnecting
links between the processing units, or neurons, are called

synapses. Each synapse can be characterized by a weight,
which is represented by a numerical value. All neurons in
the adjacent layers are connected and the flow of
information is restricted to the forward direction. The

network consists of three layers: input layer, hidden
layer(s) and output layer. The hidden layer enables the

network to learn relationships between input-output
variables through suitabIe mappings. Among the many
neural network models, the backpropagation algorithm is

one of the better known and frequently used.



Backpropagation(Rumelhart, Hinton and Williams 1986)

was created by generalizing the Widrow-Hoff learning rule
(Widrow and Hoff 1960; Widrow and Stearn 1985;

Widrow et al 1987) to multiple-layer networks and

nonlinear differentiable transfer functions. Input - output
pairs are used to train a network until it can approximate a
function. Back propagation was the first practical method

for training a multiple layer feed forw_d network. A

neural network's initial weights are simply random
numbers, which change during training. Training consists

of presenting actual experimental data to the neural
network and using a mathematical algorithm--the back

propagation algorithm_to adjust the weights. Each pair of
patterns goes through two stages of activation: a tbrward

pass and a backward pass. The forward pass involves
presenting a sample input to the network and letting the

activations flow until they reach the output layer. During

the backward pass, the network's actual output (from the
forward pass) is compared with the target output and errors

are computed for the output units. Adjustments of weights
are based on the difference between the correct and

computed outputs. Once each observation's computed and

actual outputs are within the specified error tolerance,
training stops and the neural network is ready for use:

given a new input observation, it will estimate what the
corresponding output values should be. After extensive

training, the network eventually establishes the input-
output relationships through the adjusted weights on the
network.

Learning

Learning in neural network is typically accomplished using

examples. This is also called "'training" of the neural
network because the learning is achieved by adjusting the
connection weights I in the neural network iterativeIy so

that trained (or learned) neural network can perform certain
tasks. Learning in neural network can roughly be divided

into supervised, unsupervised, and reinforcement learning.
Supervised learning is based on direct comparison between
the actual output of a neural network output and the desired

correct output, "also known as the target output. It is often
formulated as the minimization of an error function such as

the total mean square error between the actual output and
the desired output summed over all available data, A
gradient descent-based optimization algorithm such as

backpropagation can then be used to adjust connection
weights in the neural network iteratively in order to

minimize the error. Reinforcement learning is a special
case of supervised learning where the exact desired output
is unknown. It is based only on the information of whether
or not the actual output is correct. Unsupervised learning

i Thresholds (biases) can be viewed as connection weights

with fixed input 1.

is solely based on the correlations among input data. No

information on "'correct output" is available for learning.

The essence of a learning algorithm is the learning rule,
i.e., a weight-updating rule which determines how
connection weights are changed. Examples of popular

learning rulcs include the delta rule, the Hebbian rule, the
anti-Hebbian rule, and the competitive learning rule. More

detailed discussion of neural network and learning
algorithms are beyond the scope of this paper. The success

of the neural network depends greatly on defining the

influencing parameters for the problem, definition of
suitable neural network architecture and the learning
algorithm.

Data Set for Aerodynamic Models

Aerodynamic control systems can be divided into two
categories viz., con_ol surfaces and aerodynamics

controls. In this paper, aerodynamic controls and models
are the focus. The variables involved in aerodynamic

controls are angle of attack (a), sideslip angle (_3), devon

deflections (te), aileron deflections (ta), rudder deflection

(SR), speed brake deflection (SSB), landing gear effects

and ground effects. The general equations of forces (lb)

and moments (ft-lb) for key parameters are listed in the
following tables 1 and 2 (B. Jackson and C. Cruz 1992).

Forces (Ib) Model

Lift L=CL.q.S

Drag D=CD.q.S

Side-force FY=CY.q.S
Table 1. Aerodynamic forces

Moments (ft-lb) } Model

Pitching / PM=Cm.q.S.c+(L.coscc+D.sinc0.XMRc+(L.sino_-D.cosCc).ZMRc

Rolling RM=CI.q.S.b+FY.ZMRc
Yawing Cn.q.S.b+FY.XMRc

Table 2 Aerodynamic Moments

The aerodynamic coefficients involved in the above
equations are presented.

Longitudinal aerodynamic coefficients

Lift Coefficient CL:

CL = CLBas(_, M)+ACL,_FL_s(SF). 8F+ACLspEEDBRar,2(O:,

6SB)+ACLL_(SLG)+ACLg_(h/b)+ )+ACL,q(oq M).q.c/2U)+
ACL,a (c_, M)._'.c/2U

Drag Coefficient CD:



CD= CDBAs(O_,M)+ACD,aFLAPs(_F).6F

+ACDsPEEDBRAKE(Ot,tSB)+ACDLc_(tLG)+ACDge(h/b)+ACD

,q(cGq.c/2U

Pitching Moment Coefficient Cm:

Cm = CmBAS(Oq M)+ACm,a_aes(_SF).

8F+ACmspzzDBRA_(Ot,

5SB)+ACmLo(SLG)+ACmg_(h/b))+ACm, q (cq M).q.c/2U)+
ACm,a (c_, M).cz'.c/2U

Lateral aerodynamic coefficients

Side force coefficient CY:

CY=CYs_((o¢, M).. _+ACY_RuDDEa (_SR). 8R+ACY_t_goN

(OA)OA+ACYLoa_ (/SLG)_ +ACYoEa_(h/b)_+ACYp(c0.p.
b/2U+ACY_(o_).r.b/2U

Rolling Moment Coefficient CI:

CI=ClsB((ot, M).. [3+AC16RUDDER(OR). 6R+ACI,sAILERON

(f>A)tA+AC1L_af_(SLG)fj+ACtou_(h]b)_+ACIp(oO.p.
b/2U+ACI_(o0.r.b/2U

Yawing Moment Coefficent Cn:

Cn=CnsB((_, M).. _+ACnsRUDDE R (SR). 6R+ACnsatt_RON

(SA)SA+ACnLo_IffSLG)_+ ACnoE,_ (h/b)_+ACnv(o0.p.
b/2U+ACnr(o_).r, b/2U

Above equations depend basically on angle of attack and
Mach number with little increments of other factors. The

above equation can be expressed as a function of angle of
attack and Mach number and it resembles a simple

polynomial expression.

Depending on the geometry and mass properties of the
vehicle, aerodynamics coefficients will vary. The general

parameters are tabulated in table 3.

Parameters

Angle of attack (degrees)

Side angle (de_ees)
Mach number

Surface deflection (degrees)

Ranges of values
- I 0 < c_<50

-20 < _ < 20
M<0.9

-15 < 6elevons (flaps) < 15
-20 < 5rudder < 20

-20 < 5ailerons < 20

0 < 6speedbrake < 80
Table 3 Range of values involved in aerodynamic coefficients

If a regression analysis can fit a data set very well, then
neural network can perform much better than regression

techniques. Inputs considered for determining base

coefficients are angle of attack and Mach number. The

output of the neural network is the coefficients of

aerodynamic model. As a good training data set for a
particular vehicle type, geometry and mass are selected

from any wind tunnel test. Some times if the data set is not
available from experiments for wind tunnels, a good

training data set can be derived from numerical

computations from Euler or Navier stokes or Vortex lattice
method. This data set consists of a comprehensive input
and output tupple for an entire parameter space. Once
training data set is defined, spm-se data collected from

experiments can be interpolated and extended for the entire
range of data using a trained neural network. This will

avoid repeating the entire experiments in the wind tunnel.

Once training data set is selected, one must determine the
type of neural network architecture and transfer functions

that wiI1 be used to interpolate the sparse data. The next
section will discuss the selection procedure of the neural
network architecture and transfer functions used in this
work.

Neural Network Architecture

In this paper, interpolating for coefficient of IiR is
discussed for sparse data set. The rest of the various

aerodynamic coefficients will be repeated with the same
architecture of neural network with respect to

corresponding data set. The problem of defining neural
network architectures (Freeman J. A and Skapura D.M

1992, Hagan M.T., Demuth H.B and Beale 1996) can be
divided into the following categories: (i) type of neural

network (whether three layer or four layer, etc.); (ii)
number of hidden neurons; (iii) type of u'ansfer functions

(Elfiott D.L 1993); (iv) training algorithm; and (v) over
and under fitting of the results and validation of neural

network output. If the function consists of a finite number
of points, a three layer neural network is capable of
learning the function. Since the availability of data is

limited, the type of neural network considered for this
problem is a three layer neural network with input layer,
hidden layer and output layer. The input layer will have

two input neurons (alpha and Mach number) and output
layer will represent one neuron (coefficient of lift).

Domain data has specific definite bounds, rather than
having no limits. The number of hidden neurons is defined
based on the efficient fitting of the data.

For determining an appropriate (hopefully optimal or near-
optimal) number of hidden units (Lawrence S, Lee Giles

and Ah Chung Tsoi 1996), we construct a sequence of
networks with increasing number of hidden neurons from 2
to 20. More than 20 hidden neurons cause an over fitting

of the results (Lawrence S, Lee Giles and Ah chung Tsoi
1997). Each neuron in the network is fully connected and

uses all available input variables. First, a network with a
small number of hidden units is trained using random



' initialweights.Iteratively,a largernetworkisconstructed
(uptothe20hiddenneurons)andthenetworkresultsare
comparedwiththeexpectedresults.Activationfunctions
alsoplayakeyroleinproducingthebestnetworkresults.
Thetransferfunctionis a nonlinearfunctionthat when

applied to the net input of a neuron, determines the output
of the neuron. The majority of neural networks use a
sigmoid function (S-shaped). A sigmoid function is
defined as a continuous real-valued function whose domain

is the Reals, whose derivative is always positive, and
whose range is bounded. In this aerodynamic problem,

only a sigmoid function can alone produce an efficient fit.

To get a best fitting, it is suggested to use different kinds of
transfer functions for different layers of network.

However, functions such as "tanh" that produce both
positive and negative values tend to yield faster training
than functions that produce only positive values such as

sigmoid, because of better numerical conditioning.
Numerical condition affects the speed and accuracy of

most numerical algorithms. Numerical condition is
especially important in the study of neural networks

because ill-conditioning is a common cause of slow and
inaccurate results from backprop-type algorithms.
Activation functions for the hidden units are needed to

introduce nonlinearity into the network. Without
nonlinearity, hidden units would not make nets more

powerful than just plain perceptrons (which do not have
any hidden units, just input and output units). The reason

is that a linear function of linear functions is again a linear

function. However, it is the nonlinearity (i.e., the
capability to represent nonlinear functions) that makes

multilayer networks so powerful. Three types of activation
functions are used in neural networks namely linear,
sigmoid and hyperbolic tangent.

The training epoch is restricted to 1000 cycles {present a

data set, measure error, update weights}. The learning rate
and momentum is selected appropriately to get faster
convergence of the network. The input and output values

are gcal6d to range [0.1, 0.9] to ensure that the output will

lie in the output region of the nonlinear sigmoid transfer
function, Presentable variable values lie in between 0.1

and 0.9 (0.1 and 0,9 inclusive). The scaling is performed

using the following equation

A = r(V - Vmi _ ) + A_

A_x -
?.=

V_x -Vmm

V - Observed Variable

A - Presentable Variable

Once scaled training data set is prepared, it is ready for
neural network training. Levenberg-Marquardt method

(Martin T. Hagan and Mohammad B. Menhaj 1994)for
solving the optimization is selected for back propagation

training. It is selected due to its guaranteed convergence to
a local minima, and its numerical robustness.

Experiments

The training data set is divided into two sets viz., dataset

pairs which has Mach number less than 0.4, and those
greater than 0.42 . The data set is presented to the neural

network architecture /:'or the training. Initially a training

set, which has 233 pairs, is presented to the neural network
up to user-defined error of tolerance. The weights are

stored and sparse data set of 9 pairs is provided for the
same neural network architecture for further training. The
initial training data set represents the exhaustive

combination of data set in the particular parameter space.

The initial training data set represents the general pattern
of a particular aerodynamic coefficient. Based on the
general pattern, the second training data set is interpolated.

The initial data set is plotted in figure 1 and 2, and the data
in figure I can be represented by a linear type of function

whereas the data in figure 2 can be expressed as a
combination of linear and hyperbolic tangent or sigmoid
function. Numerous trials have been conducted with

different combinations of transfer functions, and we finally

concluded that the linear transfer function be adopted for

the input-to-hidden neurons and hyperbolic tangent or
sigmoid function be used for the hidden-to-output layer.

Figure 3 represents the sparse data set presented to the
neural network successively after the initial training data

set was presented. The figures 4 and 5 represent the neural
network predicted data from the sparse data set. A few

points are over fitted or under fitted in the results produced
by the network. Over or under fitting is due to the

sparseness of data. Overall the results produced by the
network are considered to be very good.
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Figure l Initial Training data for neural network (M _<0.4)

2Mach number < 0.4 then data expressed as a linear

function else a combination of linear and sigmoid function
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Figure 3. Sparse data presented to the neural network
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Figure 4 Neural network interpolated data for sparse data
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Figure 5 Neural network interpolated data for sparse data (Mach
number > 0.4)

Conclusion

Neural networks will become an important tool in future
NASA Ames efforts to move directly from wind tunnel
tests to virtual flight simulations. Many errors can be

eliminated, and implementing a neural network can

considerably reduce cost. Preliminary results have proved
that neural network is an efficient tool to interpolate across

sparse data. The prediction for the lower end and upper

end of Mach number by the neural network is considerably
deviated. The deviation is caused due to the non-

availability of data in the sparse data. Initially neural

network has been trained by the original data which
enables network to understand overall pattern. Successive

training by the sparse data alters the weights of the neural
network which causes this deviation. This deviation is

well within 10 %, which is acceptable in aerodynamic
modeling.

Further research is focused to overcome this deviation in

predicting sparse data. It is also directed to optimize
number of hidden neurons and will be integrated into web-

enabled application. Hybrid system using evolutionary

theory and neural network is planned to build an efficient
model to predict aerodynamic variables. The neural

network will be an integral tool of data mining suite in an
existing collaborative system in NASA.
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